D_s production cross section Reinhard Schwienhorst University of Minnesota ## Purpose and Goal - Find the number of tau neutrinos produced in the beam dump - D_s decays are the dominant source of tau neutrinos. - Find the number of D_s produced in the beam dump ### Method 1 - Measurements of the D_s production cross section: - none exist for a beam energy of 800GeV - find measurements for other energies E769: 250GeV, σ_{Ds} =1.5±1µb - use a theoretical curve to project them to an energy of 800GeV (NLO QCD calculation for D[±]) ### Method 2 - Find measurements of the production cross section for D[±] and D⁰. - Find the cross section ratio - $-D_s/D^{\pm}$ and D_s/D^0 . - Compute the production cross section for D_s. # D⁰ production cross section for pions and protons in fixed target experiments ## D[±] production cross section for pions and protons in fixed target experiments #### Ratio of D[±] over D⁰ production cross sections # Theoretical prediction of the D[±] over D⁰ production cross section ratio Assumption: all D meson states are created with equal probability Isospin considerations: - •Isoscalar: D[±] and D⁰ - •Isovector: D* and D* 0 #### Branching ratios: - $\bullet D^*_{+} \rightarrow D^{\pm} Br = 30.6\%, D^*_{+} \rightarrow D^{0} Br = 68.3\%$ - $\bullet D^*_0 \rightarrow D^0 Br = 100\%$ #### Count particles: - •for every 8 charm quarks: - •originally produce 1 D^{\pm} , 1 D^{0} , 3 D^{*}_{\pm} , D^{*}_{0} - •after decay of the resonance: $$2.56~D^{\scriptscriptstyle\pm}$$, $5.44~D^0$, ratio=0.32 #### Ratio of D_s over D[±] production cross sections #### Ratio of D_s over D⁰ production cross sections # D_s production cross section for protons in fixed target experiments ### D_s production cross section - Problem: the two ratios predict different values - Cause for the uncertainty: the absolute D[±] and D₀ production cross sections for protons - is higher than theory for D[±] and - lower than theory for D⁰ (but much closer) - to find an answer: - compare to πN data - also pN versus πN production of J/Ψ - also pN versus π N production of b mesons (factor of 0.9) - compare D_s/D^{\pm} ratio (≈ 0.4) to K^{\pm}/π^{\pm} ratio (≈ 0.1) - K^{\pm}/π^{\pm} ratio corrected for D^{\pm}/D^{0} ratio: ≈ 0.25 D_s production cross section for pions in fixed target experiments # J/Y production cross section for pions and protons in fixed target experiments ### Results - The different methods to compute the D_s production cross section agree within 2 σ - the smallest error comes from the D_s/D^0 cross section ratio - the D[±]/D⁰ cross section ratio for <u>protons</u> is very uncertain and the average does not agree with theory, pion data, kaon data, γ data or e⁺e⁻ data (CLEO) - The D[±] production cross section for protons seems to be too large - The D⁰ production cross section for protons seems to be too small ## Results (continued) - The D_s/D⁰ production cross section for protons agrees with the pion data - bottom and J/Ψ production indicates that the production cross section should be slightly smaller for protons than for pions. - the K^{\pm}/π^{\pm} ratio points to the lower value for the production cross section ### Conclusion and Outlook - The D_s production cross section is $(4.2\pm0.6)\mu b/nucleon$. - The error is small but the uncertainty is large - due to the uncertainty in the theoretical predictions - due to large errors and inconsistencies in measurements - We should continue this discussion